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Motion of a single capsule in a hydraulic pipeline 
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The method of characteristics is used to numerically analyse the motion of a single 
solid capsule in a hydraulic horizontal straight pipe. The capsule is assumed to be 
a point mass and the coaxial-annular-flow model around the capsule is used to derive 
the boundary conditions for water flow a t  the capsule discontinuity. The results are 
compared with experimental measurements which were taken in a pipeline 28 m in 
length and with an inside diameter of 40 mm. The capsule had wheels to keep its 
position coaxial with the pipe axis and always had a higher velocity than the water 
flow. The measurements are explained quite well by the analysis. 

1. Introduction 
The capsule pipeline is a system which transports solids in capsules carried through 

a pipeline by a flowing fluid. The hydraulic capsule pipeline usually uses water as the 
carrier fluid and can easily carry heavy materials like ore. The capsule is suspended 
by water flow without contact with the wall in a horizontal pipeline even if the 
capsule is heavier than water. Thus a hydraulic capsule pipeline does not always 
require wheeled capsules. On the other hand, a pneumatic capsule pipeline requires 
wheeled capsules because air is lighter than water. However, Yokogawa et al. (1980) 
recommend wheeled capsules even in a hydraulic capsule pipeline in order to 
transport heavy materials in large quantities over a long distance with a steep slope. 

Liu (1981) gives a detailed review of hydraulic capsule transport in general, and 
there are now many references available. Most of them, however, concern steady flow 
and very little is known about the unsteady motion of individual capsules in a 
pipeline or about transient water flow caused by the capsule motion. In this paper 
we pursue the motion of a single capsule in a horizontally straight pipeline from the 
feeding point to the pipe end. We assume that the capsules are cylindrical and that 
their posture in the pipe is always constant, and hence we exclude problems like 
‘lift off’ peculiar to the non-wheeled capsules. 

There is a well-known analysis of water hammer in a pipe based on the method 
of characteristics. The analysis is now fully established and is applicable to our 
research. Lur’e & Gol’dzberg (1971) propose a numerical analysis of pneumatic 
capsule transport which is based on the method of characteristics, and here we apply 
their method with a little modification. A capsule is moved by fluid forces, consisting 
of the pressure and shear forces, acting on its surface. However, if we use the drag 
coefficient, which is usually measured in a steady flow, to calculate the forces in the 
unsteady motion of the capsule, a complicated problem concerning unsteady forces 
arises caused by added mass, which is important in our research because the density 
differences between the fluid and the capsule is relatively small. This problem is 
avoided if we directly calculate the forces by integrating the pressure and shear 
stresses acting on the capsule surface. The forces are related to water flow around 
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the capsule, which is determined by the capsule geometry. A flow model that does 
not pass water through the clearance between the capsule and the pipe wall is one 
of the simplest. In this model the fluid forces turn out to be pressure force alone and 
the capsule velocity is necessarily equal to the water velocity. A model that calculates 
the clearance flow using the equation of orifice discharge is called an orifice flow model 
and is often used for the pneumatic capsule. In this model the capsule velocity is 
always smaller than the water velocity, because the direction of the water flow 
through the clearance is from the higher-pressure side to the lower, and the pressure 
at  the rear of the capsule is usually higher than that a t  the front. In these models 
the capsule velocity cannot exceed the water velocity and, as is well known, this is 
not always the case for the hydraulic capsule. Therefore, it is necessary to devise a 
more elaborate model. In this paper we apply the coaxial-annular-flow model which 
was used by Yanaida (1980) and Polderman (1982) and take advantage of the 
experimental findings by Tsuji, Morikawa & Chono (1980). In addition, results are 
given from experiments on single-capsule motion in a horizontal pipeline with a 
constant head. These results are compared with the numerical analysis. 

2. Theory 
2.1 . Basic equations 

The equations for unsteady water flow in pipes are well known and are given by 

i ap av +- = 0, -- 
pa2 at ax 

--+- = - A  
pax at 20 ’ 
iap av 

where p represents pressure, V the area mean velocity, x the axial coordinate, t the 
time, D the pipe inside diameter, h the pipe friction coefficient for water, p the density 
of water and a the propagating velocity of the water pressure wave. If K is the 
volumetric modulus of elasticity of water, E the Young’s modulus of pipe material 
and 6 the thickness of the pipe wall, then a is given by 

The equation of motion for the capsule is given by 

Mi# = F-fglM-pVJ, (4) 
where M is the capsule mass, Z the capsule coordinate, F the fluid forces acting on 
the capsule in the axial direction, f the coefficient of the Coulomb friction, g the 
acceleration due to gravity and V, the capsule volume. The Coulomb friction will 
have an effect, if the capsule is not neutrally suspended by water flow, in preventing 
contact with the pipe wall. 

Here, we treat the capsule as a point mass when calculating water flow, but the 
velocity and the pressure are likely to change at the capsule discontinuously: 

where we denote the value at the rear and front of the capsule by the subscripts R 
and F. 
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FIGURE 1. Coaxial-annular-flow model around a capsule. 

2.2 .  The coaxial-annular-$ow model 

The fluid forces and the clearance flow should be given by the capsule velocity 2 and 
V and p at both sides of the capsule. They are determined by the water flow around 
the capsule, which is influenced by the capsule geometry. We assume that the capsule 
is a cylinder of length 1 and diameter d, as shown in figure 1 and that i t  is suspended 
coaxially and has no spin. We apply a reference frame moving with the capsule. Then 
the relation between 2 and water velocity is given by 

vR-B = { 1 -(;)2]7i, 

v,-e = {l-@}Ti, 

(7) 

where Ti is the area mean water velocity in the clearance, which is relative to the 
capsule velocity. From (7) and (8 )  we have 

VR = V F .  (9) 

Tsuji et al. (1980) measured the pressure distribution of air flow around the stationary 
capsule as shown in figure 1, which is schematically drawn based on their measure- 
ments. We illustrate a case where p R  is larger than p F  and Ti is positive. Ap is the 
idealized pressure drop due to abrupt contraction at  the rear, which is calculated by 
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Bernoulli equation. L, is the pressure loss caused by abrupt contraction, L, is that  
due to abrupt enlargement a t  the front side, and Ap' is the pressure drop in the 
clearance. Their research confirmed that L,  is accurately estimated by the well-known 
Weisbach data and L, by the Borda-Carnot analysis. It also showed that the pressure 
at  the rear is equal to the stagnation pressure p, + +p( V, - Z), and that the pressure 
at  the front is equal to  the static pressure pF. We can calculate the fluid forces by 
summing the pressure force Fp caused by the pressure difference between both ends 
and the shear force F, due to the fluid friction acting on the cylindrical surface. Then, 
Fp is given by 

There are several models for evaluating the shear force. We assume that the clearance 
flow is a fully developed coaxial annular flow under a constant pressure gradient 
dp/dx in the clearance, and the velocity distribution in the clearance u is calculated 

(10) F~ = ~ X T F ~ ~ { ( P R ~ F ) + ~ P (  vR-2)'). 

where r the radial coordinate and p the viscosity of water. Then, the shear force is 
given by 

r=fd 

where k is ( d / D ) , .  The pressure gradient dp/dx is approximated by - Ap'/l and is 

where 5 is the loss coefficient of abrupt contraction. Thus the fluid forces F are given 

E l =  Fp+F, 
by 

U can be derived from (1 1) and (13) 

2nru dr 
- 4 

n(D2-d2) f: U =  

Thus we get the required equations (14) and (15), which relate F and ii to V,, VF, 

When ;il is negative, (10) and (1 1) undergo small changes, and instead of (14) and 
P R ,  PF and e* 
(15) we have 

(16) 
and 
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3. Method of computation 
3.1. Basic scheme 

Equations (1)  and (2) are a hyperbolic system and are solved numerically by the 
method of characteristics. The grid system used for the computation is shown in 
figure 2. The values of p and V at grid points on t = ( m -  1 )  At can be determined 
by the values on t = (m-2)At, where At is the timestep in the computation and m 
is the integer. For example, to determine the values at point A, we draw the forward 
and backward characteristics C+ and C- which pass point A. Points J and G are the 
intersecting points of the characteristics with the line t = (m-2)At. The values at 
J and G are given by the known values at the grid points on t = (m-2)At by 
interpolation. Then we have the following relations along the C+ and C-: 

HT - Hm-'= J - B( VT - J " j - 1 )  + RY-1 (18) 

H T - H ? - l =  -B(VT- VE-' )+Rg- ' ,  (19) 

where H is the pressure head defined as p = p g ( H - H , ) ,  provided that H,, is a 
reference head, B is alg and R is the friction head given by 

The superscripts indicte the time and the subscripts the axial position. HY and V z  
are determined by (18) and (19). The explanation of this method can be easily found, 
for example, in Zucrow & Hoffman (1976). 

3.2. Capsule boundary 
Now we consider the case where the capsule trajectory crosses the characteristics, 
as shown in figure 3. In  this example, the values at point A are influenced by the 
capsule trajectory. First we determine the values H E ,  H$', VE and V$' at  both ends 
of the capsule. Then we determine VF-l and HF-l by HF-2, H E ,  VFP2 and V g .  We 
have along both characteristics through Zm 

(21 1 
(22) 

where H y ~ l ,  VFGl and R v ~ l  are calculated from H P . l ,  HPY.., V r ~ l  and VPA1, and 
H&;l, VG+l and Rg;l are by HFgl,  H r - l ,  V T G ~  and VF-'. Besides (9) we need one 

H g  - H m - l =  vp - B( VE - VT6' + RTFl, 
HF - Hm-i=  B( v m  - p - 1  

WP F WP)+R%l, 



500 Y .  Tomita, M .  Yamamoto and K .  Funatsu 

Capsule trajectory 
Z m  

A R  F 
m 

m-1 
vp FB WP k k-1 / 

> 

k - 2  - (k-2)A-x +B - z m - 1  

( k - 1 ) A x  -4 
FIGURE 3. Influence of capsule trajectory. 

more equation to determine the four unknowns. This equation depends on the flow 
model, but is obtained from (7) and (15) or (8) and (18)  in the present model. If ii 
is positive, we get the following equation from ( 7 )  and (15) : 

where 

and 

a = - PD2 (1 +k2+-) 1-k2  - c + k 4  
32pl Ink  1-k2'  

1 - k2)  1-k2 
= l6pl (1 + k2 +q-&). 

By solving (23 )  we obtain 

where we choose a positive root, and next 

is necessary because we assume ii to be positive. When ;iE is negative, we have from 
(8) and (18) 

Thus, we can determine HZ and HF from (21 )  and ( 2 2 ) ,  and HZ and VT are given 
by the interpolation 

where Ax is the step in the axial direction. 
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FIQURE 5. Capsule trajectory and exit boundary. (a)  Ah < 4At; (a) Ah > tat. 

There are two other cases where the grid point A is influenced by the capsule 
trajectory, as shown in figure 4. In  those cases the values of V and H are obtained 
in a similar manner to that described above. 

3.3. Fixed boundary 
In this computation the capsule is placed near the pipe inlet and the computation 
is stopped when the capsule leaves the pipe exit. The inlet and exit heads are kept 
constant. A t  the exit, however, special consideration is needed when the capsule 
trajectory crosses the characteristics Ci which passes the last grid point, as shown 
in figure 5. We determine the values at point N and then those at the rear and front 
of the capsule. We define Ah as the time when the trajectory intersects C+ which 
passes N. When Ah is smaller than iAt,  as shown in figure 5(a) ,  from HVm1, HGG, 
VFil and V g ~ l  we can determine H F M  and VFM, which are the values at the front 
of the capsule at the intersction. WN is the intersection of the characteristics C- and 
the line t = ( m - 2 ) A t ,  and HgG and V%k1 are given by the interpolation. Since HE 
is specified, then V$ is determined by H F M ,  VFM and HE. When Ah is larger than 
;At, as shown in figure 5 ( b ) ,  the characteristics C- which passes the intersection 
crosses the line x = L, where L is the length of the pipeline. We obtain HWN and Vw, 
from an extrapolation using the values at ( m - 2 )  At and (m- 3 )  At on x = L. The rest 
of the procedure is the same as above. 
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Head tank 
V 

Weighing tank 
FIGURE 6. Experimental set-up. 

d E M M-pVc 
No. (mm) (mm) (kg) M 5 

1 36 198 0.210 0.0420 0.423 
2 36 198 0.625 0.6781 0.423 
3 38 209 0.240 0.0142 0.452 
4 38 209 0.647 0.6343 0.452 

TABLE 1 .  Specification of capsules used 

4. Experiment and numerical data for computation 
Figure 6 shows the experimental set-up. The pipeline, made of transparent acrylic 

tubes, was of length 28.26 m, inside diameter 40 mm and outside diameter 48 mm. 
The experiment was carried out under the condition of constant inlet and exit heads. 
The inlet head ranged from 0.94 to  2.34 m, while the exit head was maintained a t  
0.12 m. The flow rate was measured by weighing the fluid at the pipe exit. The 
pressure was measured a t  three points in the pipeline by pressure transducers. We 
monitored the motion of the capsule by using eight photocells placed on the pipeline. 
Table 1 shows the specifications of the capsules, which are drawn in figure 7. These 
capsules have eight wheels to  keep their posture coaxial with the pipe. 

The experiments began by manually opening the cock near the pipe inlet, which 
took about 1.3 s to fully open. This cock handling was simulated in the computation. 
The propagation speed of the pressure wave was experimentally determined as 
554.2 m/s because we could not obtain the Young’s modulus of the pipe material. 
The inferred modulus from this value is 3.556 x lo9 Pa, which is a reasonable value 
compared with those of similar plastics. The coefficient of Coulomb friction was 
determined to be 0.02, the loss coefficient of the pipe inlet was 0.56, and that of the 
cock was 0.51 when fully opened. The step in the axial direction Ax was 0.01 L and 
that in time At was Ax/4a. The validity of using this grid system was confirmed by 
comparing the analytical solution for steady water flow with this computation. 



Single capsule in a hydraulic pipeline 503 

23.91 rn 0.4 .1 
27.78 rn I 

1 I I I I I 
0 5 10 15 20 25 

t (9 
FIGURE 8. Time histories of pressures at several points in the pipeline for capsule 1 

at Hi = 1.56 m:  ----experiment; -, computation. 

5. Results and discussion 
Figure 8 shows time histories of pressures at several points in the pipeline for 

capsule 1 where Hi is the inlet head. The dashed lines show steady-state values of 
pressure from the experiment and the arrows show the time when the capsule passes 
the point. It is difficult to detect when the capsule passes from the time histories of 
pressure alone. In a pneumatic capsule pipeline there is a sharp pressure rise when 
capsule passes, see Tomita, Abe 6 Jotaki (1981). This shows that the pressure drop 
caused by the capsule is very small, and this is in part caused by its small solid 
friction. The computation proves that the pressure drop p , - p ,  of the capsule with 
a large diameter is at most 7 mm of water at the capsule’s final velocity. The 
discrepancy between measurement and computation is thought to be due to 
incomplete head control in the experiment. 

Figure 9 shows time histories of water velocity at the pipe exit and the velocity 
of capsule 2. The capsule attains a constant speed in a short time. The water velocity 
is higher than the capsule velocity just after the opening of the cock, but is soon 
outstripped by the capsule. The computation showed that the water velocities at 
various points along the pipeline are almost the same for a given time. The velocity 
histories for other stations are almost the same as shown in figure 9. 

Figure 10 shows trajectories of capsule 4 for different inlet heads. It is found that 



504 

- 2 

30 r 

25 - 

20 - 

t (5) 

15 - 

10 - 

5 -  

0 5 10 15 20 25 30 

x (m) 

FIGURE 10. Trajectories of capsule 4:  0, experiment; -, computation. 

for a given head the capsule motion is not dependent on the mass and length of the 
capsule but on the diameter. As a result of the computation, figure 11 shows g,/ V, 
against V,, where 2, and V, are the final velocities of the capsule and the water at 
the pipe exit. The computation was done for four inlet heads: 0.30, 0.94, 1.56 and 
2.34 m. Similar results were obtained by Ellis (1964) for capsules with density equal 
to that of the water. Figure 12 shows 2, and V,, 2, being always higher than V,  both 
in the experiment and the computation. The three groups of data in figure 12 are 
experimental results from the heads of 0.94, 1.56 and 2.34 m. 

We now discuss the forces acting on the capsule which are derived from the 
computation. They are the pressure, shear and Coulomb friction forces. We consider 
them as a form of acceleration. We denote A ,  as F,/M, A,  as F,/M and A as a total 
acceleration. Then, A ,  +A,-  A is due to the Coulomb friction. Figures 13, 14 and 
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FIGURE 11. Velocity ratio of a capsule at the final state : 0, computation. 
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FIQURE 12. Capsule and water velocities at the final state: 0, capsule 1; 

0 ,  capsule 2;  A, capsule 3;  A, capsule 4; -, computation. 

15 show time histories of A, A, and A,. Figure 13 shows capsule 2 at Hi = 1.56 m, 
where both F, and F, are driving forces that decrease as the h a 1  state is reached. 
Figure 14 shows capsule 1 at Hi = 2.34 m, where the driving force in the final state 
is the shear force, and the pressure force becomes the resistance. However, in this 
case p ,  is larger than pF. Figure 15 shows capsule 3 at Hi = 1.56 m, where the 
pressure force is the driving force and the shear force is the resistance. 

Figure 16 shows A, and A, at the capsule’s final speed before leaving the tube. 
When the capsule diameter is large, the pressure force is the driving force while the 
shear force is the resistance. On the other hand, when the capsule diameter is small 
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FIGURE 13. Time histories of acceleration due to pressure and shear forces 
by capsule 2 at H ,  = 1.56 m; computation. 
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FIGURE 14. Time histories of acceleration due to pressure and shear force8 
of capsule 1 at Hi = 2.34 m ; computation. 

FIGURE 15. Time histories of acceleration due to pressure and shear forces 
of capsule 3 at H ,  = 1.56 m;  computation. 
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FIQURE 16. Acceleration and water velocity at the final state by computation: 0, capsule 1; 0,  

capsule 2; A, capsule 3; A, capsule 4; -, due to pressure force; ----, due to shear force. 

and the water velocity is high, the shear force becomes the driving force. Even with 
the same diameter, the magnitude of A, and A, for light capsules is higher than that 
for heavy capsules. However, Fp and F8 for both capsules have the same order of 
magnitude. 

6. Conclusion 
This work could become a basis for the analysis of a hydraulic capsule transport 

system. For example, it would be possible to extend the present method of 
computation to the case where capsules are continuously fed into a pipeline. It is 
important to monitor the motion of individual capsules in the pipeline because there 
is sometimes a problem in handling capsules at the destination due to the random 
arrival in spite of the regular departure. It is important to apply an appropriate flow 
model around the capsule to give an accurate prediction of capsule motion. This is 
also a problem with non-wheeled capsules which will be widely used in practice. 

We would like to thank Mr H. Nakamura for his cooperation with this work. 
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